
Unicode-Enabling PHP

29th Internationalization and Unicode Conference 1

Tex Texin
Internationalization Architect

Unicode-Enabling PHP

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 2

2Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Agenda

• What is PHP?
• State of I18N in PHP
• Design and Implementation Goals
• Implementation Notes
• Future directions
Credits

– Andrei Zmievski, Yahoo! created the initial
version of this presentation

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 3

3Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

What Is PHP?

• Invented in 1995 by
Rasmus Lerdorf

• Server-side, HTML-
embedded, “interpreted”
language

• Syntax a mix of Perl, C,
and Java

• Loose typing
• Output sent to browser

PHP has been used to develop Web applications from day one. Rasmus Lerdorf
originally created it to track visits to his online resume and shortly thereafter
released it for public consumption. The language has grown from a set of simple
tags to a full-fledged scripting framework.

It is a server-side language, meaning that execution of the scripts is done by the
Web server, rather than the browser. PHP script fragments are embedded inside
HTML (or textual) files and their output is sent to the browser. It is “interpreted” in
the sense that it is not compiled to machine code, but rather to a set of opcodes that
are interpreted inside a virtual machine.

Its syntax and semantics have been borrowed from Perl, C, and Java, so it is easy for
someone proficient in one of these languages to learn PHP. One of the hallmarks of
PHP is the loose data typing: the type of the variable is decided at runtime
according to the context in which the variable is used, and the variables do not need
to be syntactically marked as containing a specific type.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 4

4Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

What is PHP?

• Runs on many platforms
– Unix, Windows, OSX, NetWare, OS/2,

AS/400, et al.
• Integrates with many server interfaces

– Apache, FastCGI, IIS, NSAPI, Java servlets,
Roxen, Tux, thttpd, command-line,
embedded interfaces, et al.

• Comes bundled with > 80 extensions
– Many more available from third parties

• PECL (PHP Extension Community Library)
• PEAR (PHP Extension & Application Repository)

PHP is platform and server agnostic. It runs on all varieties of Unix,
Windows, OSX, NetWare, OS/2, AS/400, and many others. Its Server
API is flexible enough to work under Apache, FastCGI, IIS, NSAPI,
Java servlets, Roxen, Tux, thttpd, command-line, embedded interfaces,
and pretty much anything else that comes along.

Everyday Web programming needs are supported by the 80 or so
bundled modules. Additionally, PECL (PHP Extension Community
Library) and PEAR (PHP Extension and Application Repository) provide
diverse collections of third-party code that can be easily deployed.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 5

5Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Example Application Architecture

A suggested architecture for a PHP application is shown above. The
template layer should have as little business logic as possible. As you
go down the ladder, you have less presentation and more business
logic.

The HTML Templates layer consists of HTML files with a few output
statements and calls into PHP code to produce dynamic content. The
Template Helpers encapsulate code that generates dynamic HTML
code, such as form elements for date entry. Logic related to I18N/L10N
is contained in the next layer. The main business logic contains the bulk
of data processing, data model interface, and communication with
external sources. Finally, the low-level C/C++ code can be used to
improve performance or provide capabilities not available in PHP itself.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 6

6Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

What is PHP?

PHP core:
string and array
support,
filesystem
interface, date
and time
formatting, etc.

PHP API:
interface for
extensions

TSRM: for
thread-safety

ZEND Engine:
scanner, parser,
compiler,
executor,
memory
management,
auxiliary data
structures,
configuration
support, etc.

SAPI:
Server API

The low-level functionality of PHP is based on the Zend engine. It
provides scanner & parser, compiler & executor, memory handling
routines, auxiliary data structures, configuration files support, and a few
other low-level things. By itself, it contains very few functions. Instead, it
provides an API interface that is used to develop all the extensions that
make PHP so powerful. PHP Core is an extension called ‘standard’ that
contains a few hundred functions that deal with string and array
manipulation, filesystem interface, date and time formatting, and so on.
The rest of extensions such as mysql, ldap, etc make use of Zend API
and exposes certain APIs of their own. The TSRM module is used to
make PHP and Zend thread-safe across various platforms. Finally,
SAPI (Server API) component is what enables PHP to hook into
Apache, IIS, and other components that drive PHP.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 7

7Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

International Requirements

• Web sites accessed from many countries
– PHP has little support for multilingual

processing and internationalization
– Want one program for all markets, languages

• Programs originate worldwide
– International identifiers desired
– Localized keywords are not required

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 8

8Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Unicode and Competition

• Python
– separate Unicode type
– module for basic Unicode string manipulation
– basic Unicode regular expression support

Python provides a separate Unicode string type as well
as Unicode module that has functions for manipulating
Unicode strings. Regular expressions can search
Unicode strings. Most of the standard library works
smoothly with Unicode strings. Some modules still are
not fully Unicode-friendly, but the most important pieces
are in place.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 9

9Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Unicode and Competition

• Perl
– upgrades strings to Unicode as needed
– IO layer support
– Unicode Regular Expression support
– higher level services available through CPAN

• e.g. collation

Perl supports both pre-5.6 strings of eight-bit native
bytes, and strings of Unicode characters. The principle is
that Perl tries to keep its data as eight-bit bytes for as
long as possible, but as soon as Unicodeness cannot be
avoided, the data is transparently upgraded to Unicode. It
has support for Unicode in the PerlIO layer and its
regular expressions. Most of its string operators support
UTF-8, higher level functionality like collation is provided
by CPAN modules.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 10

10Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Unicode and Competition

• Java
– most complete Unicode support

• native Unicode string type
– many i18n features

• Locales
• date, time, et al. formatting
• collation
• resource bundles
• encoding conversion
• regular expressions

Java has perhaps the most complete Unicode support of
the languages reviewed here. It has native Unicode string
type, Locale identification and localization, date and time
handling, collation, text processing, resource bundles,
character encoding conversion, regular expressions, and
much more.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 11

11Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

PHP Goals

• Backwards compatibility
• “Make simple things easy and complex

things possible”
• Functionality and stability first

– Performance optimizations later
• Parity with Java’s Unicode and i18n

support

Throughout the years we have tried to make sure that PHP remains
easy to use, that it is easy to upgrade to new versions, and that there
are no surprises when developers migrate their apps to the latest and
greatest release. Thus, the number one priority during this project has
been backwards compatibility.

We also wanted to keep the learning curve as shallow as possible,
keeping with PHP’s motto of making simple things easy and complex
things possible. While performance has been a major consideration,
functionality and stability are taking the front seat, and the optimizations
will be left until we are sure that the new version passes all our tests
and has no backwards compatibility problems.

During development, we frequently referred to Java as the paragon of
languages with good Unicode and i18n support, and we strived to make
PHP’s Unicode features equally powerful.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 12

12Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

PHP I18n Issues

• Weak, minimal i18n functions
– Locale support based on POSIX

• Strings
– strings have no associated encoding

• API presumes single-byte encoding
– mbstring extension for multi-byte support

• incomplete, not integrated into the language
• Not well suited for one version worldwide

• Many other challenges

PHP strings are considered to contain 8-bit binary data, without any
associated encoding. Most functions operate on strings as single-bytes,
which is a problem for multi-byte text. PHP is unaware of encodings,
forcing users to manually convert data using iconv() API.
The mbstring extension solves some problems, but not all. It is tailored
for CJK market, supports ~20 common encodings, and has 10+
primitive string functions. But it is not integrated into the language
runtime and lacks collation, search, boundary analysis features, etc.

Locale support is limited to the underlying C POSIX library. It relies on
the locale data installed on the system, which may be out of date or
missing altogether. Locale fallback is also not available.

PHP has a few functions for formatting date and time, numbers,
monetary units, etc, but the API is not consistent and has overlaps and
gaps. e.g. Both date() and strftime() format dates.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 13

13Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Key Decisions

• UTF-16 as internal encoding
– For performance, ICU Compatibility

• Unicode characters in identifiers
– Following UTR #31

• Operational unit is a code point
– PHP programmers need not worry about

surrogates
• Normalization Form NFC presumed

– (W3C recommended)

The only real choices for internal encoding during the design phase
were UTF-8 and UTF-16. While, UTF-8 would have allowed a more
transparent interface to external libraries and some memory savings for
ASCII text, we felt that UTF-16 provided the best space/time tradeoff for
majority of languages and was also the encoding that ICU library uses
internally.

PHP identifiers would include any Unicode character that is valid
according to UTR #31. We chose to use the character properties in
order to allow valid characters, rather than allowing any except certain
invalid ones.

The most logical unit of operation in our opinion was code point, not
code unit or grapheme. It simplifies migration, since in the majority of
legacy encodings the text is precomposed and we can expect that most
of text on the Web is in the NFC form anyway. It also frees the user
from having to worry about handling surrogate pairs.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 14

14Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Key Decisions

• Explicit, rather than implicit, i18n features
– Minimize introducing unexpected behavior

• Unicode is a choice, not a requirement
– Users can upgrade when ready
– Phases in Unicode-enabled extensions

• Extending certain language semantics is
allowed

It was tempting to modify certain language features and functions to do
have implicit i18n support, such as respecting Thai numbers when
casting strings to integers or using collation in string comparison
operators. In the end, we decided that i18n support should be explicit so
that the user run into unexpected results during migration, however
proper they might be.

The majority of text on the Web is in the NFC form. Expecting strings to
conform to this form by default would simplify implementation and would
cover 90% of cases out there.

We did not want to impose Unicode onto everyone all at once. We
decided that at least in the next major version of PHP, using Unicode
should be a conscious choice, rather than a requirement. We decided to
have a switch that would change certain language semantics that would
make working with Unicode easier and would place the choice in the
hands of the user.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 15

15Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Key Decisions

• Create an I18n Library?
– Lots of know-how required
– Reinventing the wheel
– In the spirit of PHP: borrow when possible,

invent when needed, but solve the problem
• IBM Components for Unicode (ICU)

– Available, Robust, Proven, Full-featured
– Fast, Portable, Extensible, Open Source
– Supported and maintained

There were basically two approaches to obtaining low-level Unicode
character support and algorithms for use in PHP: write them ourselves
or use an existing library. Developing our own solution was quickly
discarded as inefficient, since learning all the intricacies of Unicode
character database and algorithms, and implementing them would take
a long time and would probably duplicate existing efforts.

The only serious choice among the libraries that allegedly provide
Unicode support was ICU.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 16

16Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

ICU Features

• Unicode Character Properties
• Unicode String Class & text

processing
• Text transformations

(normalization, upper/lowercase,
etc)

• Text Boundary Analysis
(Character/Word/Sentence Break
Iterators)

• Encoding Conversions for 500+
legacy encodings

• Language-sensitive collation
(sorting) and searching

• Unicode regular expressions
• Thread-safe

• Formatting:
Date/Time/Numbers/Currency

• Cultural Calendars & Time Zones
• (230+) Locale handling
• Resource Bundles
• Transliterations (50+ script pairs)
• Complex Text Layout for Arabic,

Hebrew, Indic & Thai
• International Domain Names and

Web addresses
• Java model for locale-hierarchical

resource bundles. Multiple
locales can be used at a time

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 17

17Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Unicode Language Requirements

• Native Unicode string data type
– Unicode string literals
– Casting, Type Conversions

• Operators, Functions support Unicode
– Comparison, Indexing, Concatenation, etc.

• Fallback or Compatibility mechanisms for
functions, extensions that do not support
Unicode

• I/O, Transcoding, Legacy support

Native Unicode string type All string literals are Unicode unless
specified otherwise Upgrading functions to understand
Unicode and do the Right Thing Providing a fallback
mechanism for those functions that are not upgraded yet
Language features supporting Unicode as well: comparison,
indexing, concatenation, etc.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 18

18Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Let There Be Unicode!

• Migration Concerns
– Unicode should not be imposed on everyone
– Changing language semantics would make

development easier, however
– Solution, a control: unicode_semantics

• No changes to program behavior unless enabled
• Unicode still available if disabled, by explicit

commands
• Per-request INI setting
• Nov. 2005: runtime configuration in .INI only

– Due to overhead of symbol tables mixing encodings

Places the choice in the hands of the developer. Mainly affects
interpretation of string literals. Can be specified as .ini setting.
Unicode=off does not mean that there will be no Unicode at all.
Unicode string can still be created programmatically.

Nov. 2005 decision allows default configuration of
unicode_semantics off, but it can be easily upgraded with a
.INI configuration change.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 19

19Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Three String Types

• Unicode: textual data (UTF-16 internally)
• Binary: binary data and strings meant to

be processed on the byte level
• Codepage: for backwards compatibility

and strings in legacy encodings
– Nov. 2005: Decided three is too complex.
– Now two string types: binary and string, with

the unicode_semantics determining if
behavior is codepage or Unicode string.

The current overloaded string type is now cleanly separated.
Unicode for text, binary for byte-level data with no encoding
attached to it, and codepage strings for exchange with the
outside world. Binary data are things like images, PDFs, etc,
but can also be used for low-level string manipulation.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 20

20Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Creating Strings

• With unicode_semantics=off, string
literals are old-fashioned 8-bit strings

$str = "hello world"; // ASCII string
echo strlen($str); // result is 11

$jp = "検索オプション"; // UTF-8 string
echo strlen($str); // result is 21

This example illustrates that with unicode_semantics switch turned
off, string literals remain 8-bit binary chunks of data, and the string
functions treat them as such. The actual byte sequences depend on
the encoding that the script is in, of course, but PHP does not care
what it is.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 21

21Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Creating Strings

• With unicode_semantics=on, string
literals are of Unicode type
– 1 character may be > 1 byte
– A separate function for length in bytes

// unicode_semantics = on
$str = "hello world"; // Unicode
echo strlen($str); // result is 11

$jp = "検索オプション"; // Unicode
echo strlen($str); // result is 7

When unicode_semantics switch is enabled, the string literals in the
script are converted to Unicode during parsing stage. The conversion
uses the script encoding setting specified externally or in the script
itself.

Note that the strlen() function now returns the number of code points
in the string, instead of the number of bytes. If the user needs to
obtain the latter, they can use a separate function.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 22

22Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Binary Strings

• Binary string literals require new syntax
– value depends on the encoding of the script

// assume script is written in UTF-8
$str = b'woof'; // 77 6F 6F 66
$str = b”q\xa0q"; // 71 A0 71

$str = b<<<EOD
Ως\xcf\x86

EOD; // CE A9 CF 82 CF 86

Creation of binary strings requires introduction of new syntax. Binary
string literals have to be prefixed with b. During the parsing stage,
these literals are simply scanned as-is, without any conversions, so
the resulting contents are a direct representation of the byte
sequences in the script. Single and double-quoted strings, and
heredoc syntax are all supported.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 23

23Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Escape Sequences

• \uhhhh and \Uhhhhhh syntax for escapes
– Based on Unicode code points
– Unassigned & surrogate code points allowed

// these are equivalent
$str = "Hebrew letter alef: א";
$str = "Hebrew letter alef: \u05D0";

// so are these
$str = 'ideograph: ';
$str = 'ideograph: \U0233B4';

In order to make it easy to specify Unicode characters, we introduced
two new escape sequences: \u and \U, which have to be followed by
4 or 6 hexadecimal digits respectively. The digits are interpreted as a
Unicode codepoint value, such that \u05D0 represents U+05D0, and
\U02000B represents U+2000B.

We decided to allow direct representation of surrogate pairs as well
as unassigned codepoints. Our reasoning was that validation of such
things is best left to the intermediate layers, rather than the parser or
compiler.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 24

24Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

filesystemfilesystem
scriptsscripts

WebWeb WebWeb
HTTP output encodingHTTP input encoding

script encoding
filename encoding

PHPPHP
Unicode
strings

codepage
strings

runtime encoding

streamsstreams

stream-specific encodings

Encodings Dataflow

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 26

26Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Runtime Encoding

• Encoding of strings generated at runtime
• And for functions that do not yet support

Unicode type

// runtime_encoding = iso-8859-1
$uni = "Café"; // Unicode
$str = (string)$str; // ISO-8859-1 string
$uni = (unicode)$uni; // back to Unicode

$str = long2ip(20747599); // $str is iso-8859-1

Not all the strings in PHP will be of Unicode type, of course. There are
many places where codepage strings may occur and we need to know
what their encoding is in order to convert them to and from UTF-16
properly. Some of the places where this might happen are casting
between Unicode and codepage strings, concatenation of strings of
dissimilar types, and supporting legacy functions that have not yet been
upgraded to understand Unicode type.

Why can’t we make these legacy functions return Unicode type strings
by default? Because we cannot assume that the semantics are the
same everywhere. These may have a completely valid reason for
returning codepage strings - one example being iconv() function.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 27

27Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Script Encoding

• Scripts can use a variety of encodings:
ISO-8859-1, Shift-JIS, UTF-8, etc.

• The engine needs to know the encoding
of a script to parse it

• Encoding can be specified as an INI
setting or with a pragma in the script itself
– Pragma must be in first line of script

• Affects how identifiers and string literals
are interpreted

We felt that making programmers use a single encoding for their scripts,
such as UTF-8, would not be in the spirit of PHP. Instead, we allow a
couple of ways to tell PHP what encoding the scripts are written in. If all
of the scripts in a certain installation are in a common encoding, then
the best way to specify it is an INI setting (a value in a configuration file
read by PHP on startup and each request).

Alternatively, the script encoding can be specified by a pragma in the
script itself. The pragma is similar to the XML header, in that it has to be
the very first line of the script and must be written in ASCII-compatible
encoding.

The script encoding is used to convert identifiers and string literals
encountered by parser into Unicode form.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 28

28Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Script Encoding

• Internally, strings are UTF-16, regardless
of script encoding

• Below, $uni is a Unicode string containing
two codepoints: U+00F8 U+006C

// script_encoding = iso-8859-1
$uni = "øl"; // script bytes are F8 6C

// script_encoding = utf-8
$uni = "øl"; // script bytes are C3 B8 6C

In this example, we see a short script that visually appears the same,
but is written in different encodings. Script encoding here is specified in
an external configuration file. In both cases, the parser uses this script
encoding to convert string literals to Unicode form internally.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 29

29Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Script Encoding

• Encoding can be changed with a pragma
– Pragma does not propagate to included files

declare(encoding="iso-8859-1");
$uni = "øl"; // bytes are F8 6C

// script_encoding = utf-8
// the contents of file are read as UTF-8
include "myfile.php";

This example illustrates the usage of script encoding pragma. The
external configuration file sets script_encoding to UTF-8, but the
pragma in the file overrides it. The string literal is parsed as ISO-8859-1
byte sequence. Note that the pragma does not propagate to the scripts
included from this one. The reason for this is because we cannot be
sure of the encoding of third-party libraries that the script may include.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 30

30Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Output Encoding

• Encoding for the standard output stream
• Output is transcoded on the fly
• Does not affect binary strings

// output_encoding = utf-8
// script_encoding = iso-8859-1
$uni = "øl"; // input bytes are F8 6C
echo $uni; // output bytes are C3 B8 6C

echo b"øl"; // output bytes are F8 6C

The majority of the scripts simply use echo or print or related functions
to send the output to the browser. All of it is supposed to be in the same
encoding, so it makes sense to have a setting that PHP can use to
automatically transcode the output of the script. This setting also
changes the charset parameter in the HTTP headers, i.e. if
output_encoding is UTF-8, then the default HTTP header sent out by
PHP will be:

Content-Type: text/html; charset=utf-8

Note that binary strings are not transcoded and are simply passed
through as is. We assume that the user knows what they are doing
when working with binary strings and we do not attempt to second
guess them.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 31

31Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

HTTP Input Encoding

• With Unicode semantics enabled, PHP
converts HTTP input to Unicode

• GET requests have no encoding at all
and POST ones rarely come marked with
an encoding

• If the incoming encoding is not found,
PHP can use the http_input_encoding
setting to decode the data

Correctly decoding HTTP input is somewhat of an unsolved problem.
Using automatic encoding detection is not very reliable, due to small
amounts of data in most of the requests. The best we can do is prepare
the data for user based on the previously specified setting, and then
provide a way to easily re-decode the data in case we were wrong.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 32

32Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

HTTP Input Encoding

• Frequently incoming data is in the same
encoding as the page it was submitted
from

• Applications can ask for incoming data to
be decoded again using a different
encoding

One heuristic that we can use is that most modern browsers will send
back the data in the same encoding as they received it in, i.e. if the
output_encoding was UTF-8, then the incoming data is very likely to
be in UTF-8 as well.

Also, if the encoding is passed as an application request variable, the
application can ask PHP to re-decode the data based on this explicitly
specified encoding.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 33

33Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Filename Encoding

• Specifies the encoding of the file and
directory names on the filesystem

• Filesystem-related functions will do the
transcoding when accepting and returning
filenames

// filename_encoding = utf-8
$dh = opendir(“/tmp/подбор”);
while (false !== ($file = readdir($dh)) {

echo $file, “\n”;
}

Modern file systems should be able to support one of the Unicode
encodings, such as UTF-16 or UTF-8. PHP, however, runs on such a
variety of platforms that it is impossible to predict what particular
encoding the platform filesystem uses. Thus, we placed the choice in
the hands of the user via the filename_encoding setting.

The transcoding of the filenames between Unicode and filesystem
encoding is not automatic. All the functions that deal with filenames
need to be upgraded to do the conversion.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 34

34Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Fallback Encoding

• Used when other encodings are not
specified explicitly
– Script, runtime, output, and filename

encodings default to the Fallback Encoding,
unless you explicitly override

• Easy, one-stop configuration
• Defaults to UTF-8 if not set

fallback_encoding = iso-8859-2

We thought it was prudent to have a fallback encoding setting that can
be used when the other encodings are not specified explicitly, and that
can serve as a one-stop configuration value if the application mainly
works in a single encoding (such as many legacy apps). The fallback
encoding itself would default to UTF-8.

If fallback encoding is set to ISO-8859-2, for example, the script,
runtime, output, and filename encodings are also ISO-8859-2 unless
they are overridden.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 35

35Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Type Conversions

• Binary type cannot be converted to other
string types, via casting or implicitly

• Codepage strings can be freely converted
to Unicode, but no implicit conversions
from Unicode to codepage strings

• Both codepage strings and Unicode ones
can be cast to binary

Conversions between Unicode, binary, and codepage strings may
happen in a variety of places during the execution of a script, explicitly
or implicitly. An example of an explicit conversion is casting, and an
implicit one happens when strings of dissimilar types are concatenated
together.

We cannot convert binary type to any other string type because it has
no encoding associated with it, but inverse can be done without a
problem. No implicit conversion from Unicode type to codepage one is
to maintain data integrity, since Unicode is a more precise character set
than any codepage.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 36

36Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Conversion Issues

• Not all characters can be converted
between Unicode and legacy encodings

• PHP attempts to convert as much data as
possible

• Some conversion problems result in an
error, others - in a notice

• Conversion error behavior is
customizable
– stop, skip character, substitute, escape it

Several issues may come up during the conversion procedure, such as
a Unicode character that cannot be represented in a particular
codepage, or an invalid or truncated sequence found in the source
encoding. The behavior of PHP in case of such an error can be
customized via a couple of settings.

The main setting controls what PHP should do when it encounters an
invalid or unassigned character: stop conversion, skip the character,
substitute it with another one, or escape it in one of several possible
ways. Another setting specifies the substitution character itself, as a
Unicode code point.

If an illegal byte sequence is encountered, PHP will always stop the
conversion process and issue an error.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 37

37Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Concatenation

• Mixing codepage and Unicode strings
requires up-converting to Unicode type

• Binary type cannot be concatenated with
the other types
$str = foo(); // foo() returns a codepage string
$uni = "def"; // Unicode string
$res = $str . $uni; // result is Unicode

$res = b"abc" . "新着情報"; // runtime error!
$res = b"abc" . b"新着情報"; // OK
$res = b"abc" . (binary)"新着情報"; // OK, but different result

The concatenation operator follows the outlined conversion semantics.
Applying it to strings of the same type simply joins the strings together.
If one of the operands is a codepage string and the other is a Unicode
one, the codepage string will be converted to Unicode using the runtime
encoding setting.

No such conversion is performed when one of the operands is a binary
string, because we want to make sure that the semantics of the
conversion are handled by the programmer. One may want to convert a
Unicode string to another encoding before concatenating it, for
example.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 38

38Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Operator Support

• String offset operator based on code
points, not bytes!

• No changes to existing code for single-
byte encodings, e.g. ISO-8859-1

$str = "大学"; // bytes are e5 a4 a7 e5 ad a6
echo $str{1}; // result is 学
$str{0} = 'サ'; // string is now サ学

// bytes are e3 82 b5 e5 ad a6

Following the general rules, the string offset indexing operator works on
the code points, not on bytes or code units. While this does affect
performance since it is not possible to extract the required codepoint
with simple indexing, we felt it was better than making the user worry
about handling surrogate pairs in their code. Scripts that used to work
with only single-byte encodings, such as ASCII or ISO-8859-1, would
not be affected by this change, and those working with multi-byte
encodings most likely do not use this operator at all.

If byte-level indexing is desired, the proper approach would be to
convert the string to codepage string using UTF-16 encoding or cast it
to binary type.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 39

39Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Arrays

• All 3 types of strings can be used as keys
• The Unicode semantics switch affects key

lookup
– With unicode_semantics=on, native “abc”

and Unicode “abc” are equivalent
– With unicode_semantics=off, they are

distinct

PHP’s arrays are actually ordered maps, which associate a key with a
value. The keys can be either integers or strings. This type is optimized
in several ways, so that you can use it as a real array, vector,
hashtable, dictionary, queue, etc.

We allow all string types to be used as keys. However, when Unicode
semantics are enabled, it is desirable to have Unicode “abc” and
codepage “abc” strings mapping to the same value. This helps with
migrating scripts to support Unicode, since old legacy strings floating
around can be used alongside Unicode strings and resolve equivalently.
No such folding is done when Unicode semantics are turned off, for
performance and compatibility reasons.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 40

40Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Inline HTML

• PHP scripts are frequently interspersed
with HTML blocks

• HTML blocks should be in the output
encoding
– Treated as binary strings and passed

through

At the top 2 or 3 layers of the previously mentioned architecture, PHP
blocks are embedded inside HTML pages, e.g.

<h1>Hello, <?php echo get_user_name(); ?></h1>

The HTML content is actually processed by the PHP engine, resulting
in an implicit print statement internally. The encoding of the HTML
content should already be the same as the output encoding specified by
the user - anything else would not make sense, e.g. having HTML
content in ISO-8859-1 but specifying output_encoding as UTF-8.

Relying on this assumption, we can simply treat the HTML blocks as
binary strings and hand them off to PHP’s output layer, which passes
them through without any transcoding, as discussed before.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 41

41Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Functions

• Default distribution of PHP has a few
thousand functions

• Most of them use parameter parsing API
that accepts typed parameters

• The upgrade process can be alleviated by
adjusting this API to perform automatic
conversions

As mentioned previously, PHP comes with around 80 extensions which
together offer a few thousand functions. Those functions that accept or
return string values should be upgraded to work properly with new
Unicode and binary string types. Most of them use parameter parsing
API that uses a format string to specify what parameter types the
function expects.

We can simplify the upgrade process by making the parsing API
perform on-the-fly parameter conversion. For example, if a Unicode
string is passed to a function expecting a codepage string, the engine
will attempt to convert the Unicode string using the runtime encoding.
The inverse happens for functions that expect a Unicode string, and are
passed a codepage one.

As a result, all of the functions will be able to accept Unicode
parameters using this fallback mode until their behavior is upgraded to
handle Unicode, codepage, and binary types explicitly.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 42

42Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Functions

• Ideally, all functions should detect string
type and manipulate strings accordingly

• Functions should be analyzed to
determine their semantics under Unicode
– Unicode-enabling a function does not mean

that it will automatically support ICU-based
i18n features

• Upgrading functions requires involvement
from extension authors

All the core functions should be carefully analyzed to
determine their semantics when working with Unicode strings.
Making a function Unicode-enabled does not mean that it will
automatically support ICU-based i18n features. For example,
strftime() relies on POSIX locale information and while we can
make it accept Unicode format strings, you should use ICU-
specific date formatting mechanisms for most cases.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 43

43Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Functions

• Minimizing work for extension authors
– If a Unicode string is passed to a function

expecting a legacy string, the engine will
attempt to convert it to the runtime encoding

– The inverse happens for functions that are
passed a legacy string when they require a
Unicode one

• Guidelines are essential for consistency

It is impossible to upgrade all of the functions at once. Each one has to
be analyzed to determine what its behavior should be when it is passed
a Unicode or a binary string. For example, trim() function currently
removes a certain set of whitespace characters from the beginning and
end of a string. A question comes up, should this set be extended to
cover additional Unicode whitespace characters when trim() is passed
a Unicode string?

To avoid haphazard approach to the migration, we developed a set of
guidelines that the extension authors should adhere to as closely as
possible.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 44

44Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Guidelines

• No drastic changes to function behavior
• Search/comparison functions work in

binary mode
• Case-insensitive functions use simple

case mapping
• Combining sequences do not influence

matching
• Formatting functions do not use ICU API

For backwards compatibility, functions should not change drastically, even to
achieve more correct Unicode support. E.g. trim() should not start removing
Unicode characters with the General Category property of whitespace.

Collation and string search API are not used when upgrading functions for 2
reasons. 1) We did not want to add parameters to function prototypes. 2) New
collation changes results and inhibits uptake. PHP will continue defaulting to binary
compares. Users other functions offering ICU collation and search API.
Supporting full case mapping would break legacy applications. E.g. finding a match
where the search string is longer than the located substring, e.g. stristr(‘eßen’,
‘essen’).

String search matches strings followed by combining characters. This may be
revised in the future, but since Normalization form NFC is expected, it should not be
a frequent problem.

Formatting functions, e.g. strftime(), printf(), number_format(), etc should accept
Unicode strings as parameters, but should continue to work with POSIX API and
locales. Supporting both POSIX and ICU formats would be too complicated and
confusing. The recomendation is to switch scripts to use ICU-based API exclusively.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 46

46Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Functions: Collation

• By default, strcasecmp() uses default
locale and collation, inherited from
system locale

• To use other collations use ICU API
if (strcasecmp($a, $b) == 0) { ... }

$collator = ucol_open("fr_FR", ...);
ucol_setAttribute($collator, ...);
if (ucol_strcoll($collator, $a, $b) == 0) {
...
}

Default locale is inherited from the system locale. It can be
overridden by the application if necessary, but to process
multi-locale data it’s best to manage locales dynamically.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 47

47Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Stream I/O

• PHP has a streams-based I/O system
• Generalized file, network, data

compression, and other operations
• Streams are in binary mode by default

– We do not make assumptions about the type
or encoding of data coming in from streams

In the simplest definition, a stream is a resource object that exhibits
streamable behavior, i.e. it can be read from or written to in a linear
fashion. Streams can accept one or more filters that perform operations
on data as it is being transmitted within the stream. Most of PHP’s I/O
behavior is implemented on top of the streams.

When unicode_semantics switch is on, we cannot make any
assumptions about the type or encoding of the data coming in from the
streams. Consequently, functions reading from a stream will return
strings of binary type, and functions writing to a stream will simply pass
through the data as is.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 48

48Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Stream I\O

• Explicit Unicode conversion
• Or stream conversion filter

$data = file_get_contents('mydata.txt');
$unidata = unicode_decode($data, 'EUC-JP');

$fp = fopen($file, 'rw');
stream_filter_append($fp, 'unicode.convert', 'EUC-JP');
// reads EUC-JP data and converts to Unicode
$data = fread($fp, 1024);
// converts Unicode to EUC-JP and writes it
fwrite($fp, $data);

Applications have a couple of ways to convert the binary data into the
expected encoding. One would be to manually decode or encode the
data using the provided API. Another one would rely on the filters
mechanism, where a filter for a specific encoding is applied to the
stream and manages the conversion to and from Unicode.

We can do a few other tricks, such as having a default filter that gets
applied to every stream, or checking the stream mode in fopen() and
returning binary or text data in the default encoding. The exact degree
of automatization remains to be determined.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 49

49Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Unicode Identifiers

• Unicode characters allowed in identifiers
– Ideographic & accented characters allowed

class コンポーネント {
function コミット { .. }

}

$プロバイダ = array();
$プロバイダ[‘ַח וּ עְיול רַ נָה שָׁ ’] = new コンポー
ネント();

In previous versions PHP has accepted accented characters in
identifiers. We decided to extend the definition of an identifier to include
any symbols determined as valid according to Unicode Technical
Report 31, Identifier and Pattern Syntax.

This example presupposes that script_encoding=utf-8, since we are
using both Hebrew and Japanese character sets.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 50

50Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Performance

• Initial implementation is slow
• There has been no optimization yet

– some of the unicode functions are slow
– Caching of ICU collators, and other handles

will also help
– The character index operator ([]) is slow

• since UTF-16 characters are variable width
• Considering data structures to speed it up

• It’s early yet

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 51

51Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Looking Forward (PHP 6)

• 90% of described functionality is finished
– (Not my estimate)

• Make code available publicly
• Document new API and migration

guidelines
• Expose ICU services
• Optimize performance
• Educate, educate, educate
• Get extensions upgraded

The project has been progressing, and approximately 90% of the
functionality has been implemented. The process of upgrading existing
extensions will probably take from three to six months. Good API
documentation and migration guidelines are crucial in making it go
faster.

We also need to develop an extension that exposes ICU services, such
as collation, boundary analysis, transformations, and so on.Once the
desired functionality is achieved, we can concentrate on optimizing
performance and hopefully bringing it up to existing level.

We have an ongoing need to educate both PHP developers and PHP
users to understand Unicode character model, encodings, algorithms,
internationalization and how the new version of PHP supports migrating
and developing applications.

Unicode-Enabling PHP

29th Internationalization and Unicode Conference 52

52Unicode-Enabling PHP, Tex Texin and Andrei Zmievski, Yahoo!

Thank You!Thank You!

¿Questions?¿Questions?

